Tork Premium Air Freshener Mixed A1 Essity Australasia Chemwatch: 5584-33 Version No: 4.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 4 Issue Date: **17/02/2023** Print Date: **20/02/2023** S.GHS.AUS.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Tork Premium Air Freshener Mixed A1 | |-------------------------------|-------------------------------------| | Chemical Name | Not Applicable | | Synonyms | Product Code: 236056 | | Proper shipping name | AEROSOLS | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Air freshener. #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Essity Australasia | |-------------------------|--| | Address | 30-32 Westall Road SPRINGVALE VIC 3171 Australia | | Telephone | (03) 9550 2999 | | Fax | 1800 630 234 | | Website | http://www.tork.com.au/ | | Email | customerservice.anz@essity.com | ## Emergency telephone number | Association / Organisation | Essity Australasia | CHEMWATCH EMERGENCY RESPONSE (24/7) | |-----------------------------------|--------------------|-------------------------------------| | Emergency telephone numbers | 1800 643 634 | +61 1800 951 288 | | Other emergency telephone numbers | Not Available | +61 3 9573 3188 | Once connected and if the message is not in your preferred language then please dial 01 #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Aerosols Category 1, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Hazard pictogram(s) Signal word Danger ## Hazard statement(s) | AUH044 | Risk of explosion if heated under confinement. | | |-----------|--|--| | H222+H229 | Extremely flammable aerosol. Pressurized container: may burst if heated. | | | H315 | Causes skin irritation. | | | H317 | May cause an allergic skin reaction. | | | H319 | Causes serious eye irritation. | | Chemwatch: **5584-33** Page **2** of **14** Version No: 4.1 Tork Premium Air Freshener Mixed A1 Issue Date: **17/02/2023**Print Date: **20/02/2023** | H336 | May cause drowsiness or dizziness. | |------|--| | H411 | Toxic to aquatic life with long lasting effects. | ## Precautionary statement(s) Prevention | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |--| | Do not spray on an open flame or other ignition source. | | Do not pierce or burn, even after use. | | Use only outdoors or in a well-ventilated area. | | Wear protective gloves, protective clothing, eye protection and face protection. | | Avoid breathing mist/vapours/spray. | | Avoid release to the environment. | | Wash all exposed external body areas thoroughly after handling. | | Contaminated work clothing should not be allowed out of the workplace. | | | ## Precautionary statement(s) Response | P302+P352 | IF ON SKIN: Wash with plenty of water. | |----------------|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P391 | Collect spillage. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | ## Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|--|--| | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | ## Precautionary statement(s) Disposal **P501** Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |-----------|--|---------------| | 64-17-5 | 10-20 | ethanol | | 67-63-0 | 1-10 | isopropanol | | 5392-40-5 | 1-10 | <u>citral</u> | | 5989-27-5 | 1-10 | d-limonene | | Legend: | Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | ### **SECTION 4 First aid measures** ## Description of first aid measures | Description of first and measures | | | |-----------------------------------|--|--| | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. | | ► Transport to hospital, or doctor. Chemwatch: 5584-33 Page 3 of 14 Tork Premium Air Freshener Mixed A1 Issue Date: 17/02/2023 Print Date: 20/02/2023 Ingestion Not considered a normal route of entry. #### Indication of any immediate medical attention and special treatment needed Treat symptomatically Version No: 4.1 For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K). - ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. - Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). - Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions - Fructose administration is contra-indicated due to side effects. ### **SECTION 5 Firefighting measures** #### **Extinguishing media** - Alcohol stable foam. - Dry chemical powder - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. #### SMALL FIRE: ▶ Water spray, dry chemical or CO2 #### LARGE FIRE: Water spray or fog. #### Special hazards arising from the substrate or mixture Fire Fighting Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ## Advice for firefighters | Alert Fire Brigade and tell them location and nature of h | nazard. | |---|---------| |---|---------| ## May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage
from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use ## Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Severe explosion hazard, in the form of vapour, when exposed to flame or spark, Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition with violent container rupture. - Aerosol cans may explode on exposure to naked flames. - Rupturing containers may rocket and scatter burning materials. - Hazards may not be restricted to pressure effects. - May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. HAZCHEM Not Applicable #### **SECTION 6 Accidental release measures** Fire/Explosion Hazard #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Environmental hazard - contain spillage. ## Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Wear protective clothing, impervious gloves and safety glasses - Shut off all possible sources of ignition and increase ventilation. - ▶ Wipe up. - If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. ## **Major Spills** Minor Spills #### Environmental hazard - contain spillage. Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. Chemwatch: 5584-33 Page 4 of 14 Issue Date: 17/02/2023 Version No: 4.1 #### Tork Premium Air Freshener Mixed A1 Print Date: 20/02/2023 - Prevent, by any means available, spillage from entering drains or water courses - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. - Absorb or cover spill with sand, earth, inert materials or vermiculite - If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Collect residues and seal in labelled drums for disposal. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - DO NOT incinerate or puncture aerosol cans. - DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - ▶ Store in original containers in approved flammable liquid storage area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - Keep containers securely sealed. Contents under pressure. - Store away from incompatible materials. Other information Store in a cool, dry, well ventilated area. - Avoid storage at temperatures higher than 40 deg C - Store in an upright position. - Protect containers against physical damage. - Check regularly for spills and leaks - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities Suitable container - Aerosol dispenser. - ▶ Check that containers are clearly labelled. Storage incompatibility Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. ## **SECTION 8 Exposure controls / personal protection** #### **Control parameters** ## Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------|-------------------|-----------------------|----------------------|---------------|---------------| | Australia Exposure Standards | ethanol | Ethyl alcohol | 1000 ppm / 1880 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure Standards | isopropanol | Isopropyl alcohol | 400 ppm / 983 mg/m3 | 1230 mg/m3 / 500 ppm | Not Available | Not Available | #### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------|---------------|---------------|-------------| | ethanol | Not Available | Not Available | 15000* ppm | | isopropanol | 400 ppm | 2000* ppm | 12000** ppm | | d-limonene | 15 ppm | 67 ppm | 170 ppm | | Ingredient | Original IDLH | Revised IDLH | |-------------|---------------|---------------| | ethanol | 3,300 ppm | Not Available | | isopropanol | 2,000 ppm | Not Available | | citral | Not Available | Not Available | | d-limonene | Not Available | Not Available | ### **Occupational Exposure Banding** | Ingredient Occupational Exposure Band Rating Occupational Exposure Band Limit | | |---|--| |---|--| Notes: Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. Chemwatch: 5584-33 Version No: 4.1 # Page 5 of 14 Tork Premium Air Freshener Mixed A1 Issue Date: **17/02/2023**Print Date: **20/02/2023** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |------------|--|----------------------------------| | citral | E | ≤ 0.1 ppm | | d-limonene | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Speed: | |--|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2 5 m/s (200-500 f/min) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high
toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Individual protection measures, such as personal protective equipment ## Eve and face protection - ► Safety glasses with side shields - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] - Close fitting gas tight goggles ## Skin protection ## See Hand protection below ## NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. - ▶ No special equipment needed when handling small quantities. - Hands/feet protection OTHERWISE: - For potentially moderate exposures: - $\mbox{\ }\mbox{\ }\$ - For potentially heavy exposures: - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. ## Body protection # See Other protection below No special equipment needed when handling small quantities. ## Other protection # OTHERWISE: • Overalls. - Skin cleansing cream. - ► Eyewash unit. - Do not spray on hot surfaces. ## Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer*- ## Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or Version No: 4.1 Page 6 of 14 Issue Date: 17/02/2023 Tork Premium Air Freshener Mixed A1 Print Date: 20/02/2023 generated selection: Tork Premium Air Freshener Mixed A1 | Material | СРІ | |-------------------|-----| | NITRILE | A | | BUTYL | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | Air-line* | A-2 P2 | A-PAPR-2 P2 ^ | | up to 20 x ES | - | A-3 P2 | - | | 20+ x ES | - | Air-line** | - | ^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. ## **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Colourless to pale yellow highly flammable liquid with characteristic odour. | | | |--|--|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 0.619-0.645 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Applicable | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 19 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.8 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 350-450 | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ⁻ Full-face Chemwatch: **5584-33** Page **7** c Version No: 4.1 Tork Premium Air Freshener Mixed A1 Page **7** of **14** Issue Date: **17/02/2023**Print Date: **20/02/2023**Print Date: **20/02/2023** #### Information on toxicological effects | Information on toxicological ef | ffects | |---------------------------------
--| | Inhaled | There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. WARNING:Intentional misuse by concentrating/inhaling contents may be lethal. | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | This material can cause eye irritation and damage in some persons. | | Chronic | Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Prolonged exposure to ethanol may cause damage to the liver and cause scarring. It may also worsen damage caused by other agents. Main route of exposure to the gas in the workplace is by inhalation. Exposure to Aliphatic aldehydes can cause irritation of the skin. A number of common flavor and fragrance chemicals can form peroxides surprisingly fast in air. Antioxidants can in most cases minimize the oxidation. Fragrance terpenes are easily oxidized in air. Non-oxidised forms are very weak sensitizers; however, after oxidation, the hyproperoxides are strong sensitisers which may cause allergic reactions. Autooxidation of fragrance terpenes contributes greatly to fragrance allergy. There is the need to test for compounds the patients are actually exposed to, not only the ingredients originally applied in commercial formulations. d-Limonene may cause damage to and growths in the kidney. These growths can progress to cancer. Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. This should be less than 10 millimoles of peroxide per litre. This is because peroxides may have sensitizing properties. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness. Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol. Animal testing showed the chronic exposure did not produce reproductive effects. NOTE: Commercial isopropanol does not contain " | WARNING: Aerosol containers may present pressure related hazards | Tork Premium Air Freshener
Mixed A1 | TOXICITY | IRRITATION | |--|--|--| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | Inhalation(Rat) LC50: 64000 ppm4h ^[2] | Eye (rabbit):100mg/24hr-moderate | | ethanol | Oral (Rat) LD50: 7060 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 12800 mg/kg ^[2] | Eye (rabbit): 10 mg - moderate | | isopropanol | Inhalation(Mouse) LC50; 53 mg/L4h ^[2] | Eye (rabbit): 100 mg - SEVERE | | | Oral (Mouse) LD50; 3600 mg/kg ^[2] | Eye (rabbit): 100mg/24hr-moderate | | | | Skin (rabbit): 500 mg - mild | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Skin (guinea pig): 1%/48h - mod | | | Oral (Rat) LD50: 4960 mg/kg ^[2] | Skin (guinea pig):100mg/24hSEVERE | | aitual | | Skin (human): 40 mg/24h - mild | | citral | | Skin (man): 16 mg/48h - SEVERE | | | | Skin (pig): 50 mg/24h - SEVERE | | | | Skin (rabbit): 100 mg/24h-SEVERE | | | | Skin (rabbit): 500 mg/24h - mod | Chemwatch: 5584-33 Page 8 of 14 Issue Date: 17/02/2023 Version No: 4.1 Print Date: 20/02/2023 #### Tork Premium Air Freshener Mixed A1 | d-limonene | Dermal (rabbit) LD50: >5000 mg/kg ^[2] Oral (Rat) LD50: >2000 mg/kg ^[1] | IRRITATION Eye: no adverse effect observed (not irritating) ^[1] Skin (rabbit): 500mg/24h moderate Skin: no adverse effect observed (not irritating) ^[1] | |------------|--|---| | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | #### ISOPROPANOL Isopropanol is irritating to the eyes, nose and throat but generally not to the skin. Prolonged high dose exposure may also produce depression of the central nervous system and drowsiness. Few have reported skin irritation. It can be absorbed from the skin or when inhaled. Intentional swallowing is common particularly among alcoholics or suicide victims and also leads to fainting, breathing difficulty, nausea, vomiting and headache. In the absence of unconsciousness, recovery usually occurred. Repeated doses may damage the kidneys. A decrease in the frequency of mating has been found in among animals, and newborns have been found to have a greater incidence of low birth weight. Tumours of the testes have been observed in the male rat. The terpenoid hydrocarbons are found in needle trees and deciduous plants. This category of chemicals shows very low acute toxicity. They are ecreted in the urine. They are unlikely to cause genetic damage, but animal testing shows that they do cause increased rates of kidney cancer. They have low potential to cause reproductive and developmental toxicity. No significant acute toxicological data identified in literature search Epoxidation of double bonds is a common bioactivation pathway for alkenes. The allylic epoxides formed were found to be sensitizing. Research has shown that conjugated dienes in or in conjunction with a six-membered ring are prohaptens, while related dienes containing isolated double bonds or an acrylic conjugated diene were weak or non-sensitising for citral Citral is rapidly absorbed from the gastrointestinal tract. Much of an applied dermal dose is lost due to its extreme volatility, but the citral remaining on the skin was fairly well absorbed. Citral is rapidly metabolised and excreted as
metabolites. Urine is the major route of elimination. Acute toxicity of this chemical is low in rodents because the oral or dermal LD50 values were more than 1000 mg/kg. This chemical is irritating to skin and not irritating to eyes in rabbits. There is some evidence that this chemical is a human skin sensitiser. Repeat dose toxicity: Several repeated dose oral studies show no adverse effect of citral at less than 1,000 mg/kg/day exposure and some histological changes in the nasal cavity or forestomach, the first exposure sites, probably due to irritation, at more than 1,000 mg/kg/day. Male and female F344/N rats received microencapsulated citral in feed at concentrations of 0, 0.63, 1.25, 2.5, 5 and 10% (resultant doses: 0, 142, 285, 570, 1,140 and 2,280 mg/kg/day) for 14 days. Minimal to mild hyperplasia and/or squamous metaplasia of the respiratory epithelium was observed in nasal cavity without inflammatory response at 1,140 and 2,280 mg/kg/day of both sexes. The NOAEL was established at 570 mg/kg/day. In an OECD preliminary reproduction toxicity screening test [TG 421], citral was administered to Crj:CD (SD) rats by gavage at doses of 0, 40, 200 and 1,000 mg/kg/day in males for 46 days and in females for 39-50 days including before and through mating and gestation periods and until day 3 of lactation. Squamous hyperplasia, ulcer and granulation in lamina propria were observed in the forestomach at 1,000 mg/kg/day of both sexes. Therefore, the NOAEL for repeated dose toxicity was 200 mg/kg/day for both sexes. Developmental toxicity: in the above preliminary reproductive study, no effects were detected in reproductive ability, organ weights or histopathology of the reproductive organs of both sexes, and delivery or maternal behavior. However, body weights of male and female pups were reduced in the 1000 mg/kg group. Therefore, an oral NOAEL for developmental toxicity was 200 mg/kg/day. In a teratogenicity study, SD pregnant rats were exposed to citral by inhalation for 6 hr/day on gestation days 6-15 at mean concentration of 0, 10 or 34 ppm as vapour, or 68 ppm as an aerosol/vapour mixture. Even in the presence of the maternal effects, no significant teratogenicity was noted at 68 ppm. An inhalation NOAEL of teratogenicity was established at 68 ppm (423 mg/m3). Genotoxicity: Seven bacterial reverse mutation studies indicate negative results with and without metabolic activation. As for non-bacterial in vitro study, two chromosomal aberration results in Chinese hamster cells are negative however one positive result in sister chromatid exchange is given in the same cells. Additionally, two in vivo micronucleus tests in rodents indicate negative results. Based on the above information, the genotoxic potential of citral can be considered to be negative. CITRAL Carcinogenicity: A NTP study shows that there was no evidence of carcinogenic activity in male/female rats and male mice but some evidence of malignant lymphoma in female mice (up to 4,000 ppm in feed in rats and up to 2,000 ppm in feed in mice). Dermal application of citral induces prostate hyperplasia with low severity only in some strains of rats. However, the NTP oral carcinogenicity studies in rats and mice found no evidence of lesions (neoplastic or non-neoplastic) in any male reproductive organ, including the prostate. The health significance of the effects seen in the dermal studies in rats is uncertain due to dramatic strain differences and it is noted that the work has primarily been performed in a single laboratory. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. For dienaldehydes: Dienaldehydes are by-products of peroxidation of polyunsaturated lipids and commonly found in many foods or food-products. Both National Cancer Institute (NCI) and NTP have expressed great concern on the potential genotoxicity and carcinogenicity of dienaldehydes. 2,4-Decadienal and 2,4-hexadienal are autooxidation products of polyunsaturated fatty acids Several researchers have implied there could be a link between exposures to lipid peroxidation products in the diet and the development of human cancers. Lipid hydroperoxides have been shown to give rise to low intracellular levels of 2,4-decadienal and other alpha-beta-unsaturated aldehydes that are known to be reactive with DNA. Indested lipid oxidation products and oxidized fats have been reported to cause increased excretion of mutagens, cellular injury to liver and kidneys, increased cell proliferation in the gastrointestinal tract, and other nonspecific tissue injury and irritation effects resulting from induced oxidative stress. Treatment related changes following gastric lavage administration for up to 3 months were similar for 2,4-hexadienal and 2,4-decadienal, and in both cases the forestomach and nose were identified as target organs. In two week studies of 2.4-hexadienal and 2.3 decadienal in rats and mice, forestomach lesions included necrosis and ulceration; epithelial hyperplasia was observed in rats and mice in the 2,4-hexadienal studies. In the 3-month studies of 2,4-hexadienal and 2,4-decadienal, forestomach epithelial hyperplasia and degeneration with or without chronic active inflammation occurred i addition to nasal olfactory epithelia atrophy and necrosis. Carcinogenicity and mutagenicity data from testing of dienals are limited. In the two year carcinogenicity studies, 2,4-hexadienal induced significantly increased incidences of forestomach neoplasms in rats and mice. NTP Technical Report 2.4-decadienal Trans, trans-2,4-decadienal (tt-DDE or 2,4-De), a specific type of dienaldehyde, is abundant in heated oils and has been associated with lung adenocarcinoma development in women due to their exposure to oil fumes during cooking. Cultured human bronchial epithelial cells (BEAS-2B cells) were exposed to 0.1 or 1.0 uM tt-DDE for 45 days, and oxidative stress, reactive oxygen species (ROS) production, GSH/GSSG ratio, cell proliferation, and expression of TNFalpha and IL-1beta were measured. The results show that tt-DDE induced oxidative stress, an increase in ROS production, and a decrease in GSH/GSSG ratio (glutathione status) in a dose-dependent manner. Treatment of BEAS-2B cells with 1.0 uM tt-DDE for 45 days increased cell proliferation and the expression and release of pro-inflammatory cytokines TNFalpha and IL-1beta. Cotreatment of BEAS-2B cells with antioxidant N-acetylcysteine prevented tt-DDE-induced cell proliferation and release of cytokines. Therefore, these results suggest that tt-DDE-induced changes may be due to increased ROS production and enhanced oxidative stress. Since increased cell proliferation and the release of TNF-alpha and IL-1beta are believed to be involved in tumor promotion, these results suggest that tt-DDE may play a role in cancer promotion. Previous studies on dienaldehydes have focused on their genotoxic or carcinogenic effects in the gastrointestinal tract; the present study suggests a potential new role of tt-DDE as a tumor promoter in human lung epithelial cells. Trans, Trans-2,4-Decadienal, a Product Found in Cooking Oil Furnes, Induces Cell Proliferation and Cytokine Production Due to Reactive Chemwatch: 5584-33 Page 9 of 14 Issue Date: 17/02/2023 Version No: 4.1 #### Tork Premium Air Freshener Mixed A1 Print Date: 20/02/2023 Oxygen Species in Human Bronchial Epithelial Cells Louis W. Chang Wai-Sze Lo Pinpin Lin Toxicological Sciences, Volume 87, Issue 2, 1 October 2005, Pages 337-343, http://doi.org/10.1093/toxsci/kfi258 2,4-Decadienal is produced by the oxidation of linoleic acid. 2,4-Decadienal is found as a contaminant in water.It is generated from polyunsaturated fatty acids by the action of plant lipoxygenases and is produced in mammalian tissues in certain physiological and pathophysiological processes such as lipid peroxidation, arachidonic acid oxidation, and reactions with reactive oxygen species A member or analogue of a group of aliphatic, linear alpha, beta-unsaturated aldehydes and structurally related substances These substances are generally regarded as safe. They are found in flavouring substances in food and are rapidly absorbed and broken down in the body. - Produces maternal effects (oogenesis, ovaries, fallopian tube changes) and effects live-birth index. #### Tumorigenic by RTECS criteria d-Limonene is readily absorbed by inhalation and swallowing. Absorption through the skin is reported to the lower than by inhalation. It is rapidly distributed to different tissues in the body, readily metabolized and eliminated, primary through the urine. Limonene shows low acute toxicity by all three routes in animals. Limonene is a skin irritant in both experimental animals and humans. Limited data is available on the potential to cause eye and airway irritation. Autooxidised products of d-limonene have the potential to sensitise the skin. Limited data is available on the potential to cause respiratory sensitization in humans. Limonene will automatically oxidize in the presence of light in air, forming a variety of oxygenated monocyclic terpenes. When contact with these oxidation products occurs, the risk of skin sensitization is high. Limonene does not cause genetic toxicity of birth defects, and it is not toxic to the reproductive system. Monomethyltin chloride, thioglycolate esters, and tall oil ester reaction product: Monomethyltin trichloride (MMTC, CAS RN: 993-16-8), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA), CAS RN: 57583-34-3), monomethyltin tris[isooctylmercaptoacetate (MMT(IOTG), CAS RN: 54849-38-6) and methyltin reverse ester tallate reaction product (TERP, CAS RNs: 201687-58-3, 201687-57-2, 68442-12-6, 151436-98-5) are considered one category of compounds for mammalian studies via the oral route. The
justification for this category is based on structural similarities and the demonstrated rapid conversion of all of the esters to the MMTC when placed in simulated mammalian gastric contents [0.07M HCI] under physiological conditions. For the MMT(EHTG) >90% conversion to MMTC occurred within 0.5 hours. For TERP, 68% of the monomethyltin portion of the compound was converted to MMTC within 1 hour. Thus, MMTC is the appropriate surrogate for mammalian toxicology studies via the oral route. TERP is a reaction product of MMTC and dimethyltin dichloride (DMTC), Na2S, and tall oil fatty acid [a mixture of carboxylic acids, predominantly C-18]. The reaction product is a mixture of carboxylic esters and includes short oligomers of mono/dimethyltins bridged by sulfide groups Although the tall oil component of TERP is not structurally similar to EHTG, TERP s conversion to MMTC justifies its inclusion. While the contribution of the various ligands to the overall toxicity may vary, the contribution is expected to be small relative to that of the MMTC. Further, the EHTG ligand from MMT(EHTG) is likely to be more toxic than the oleic or linoleic acid from TERP so inclusion of TERP in the category is a rather conservative approach. The other possible degradate of tall oil and EHTG is 2-mercaptoethanol (2-ME), and it is common to both ligands. Data for MMT(EHTG) and MMT(IOTG) are used interchangeably because they are isomers differing only slightly in the structure of the C-8 alcohol of the mercaptoester ligand. In addition, the breakdown products of MMT(EHTG) and MMT(IOTG) are the thioglycolate esters (EHTG and IOTG), which have the common degradates, thioglycolic acid and C-8 alcohols (either 2-ethylhexanol or isooctanol). EHTG and IOTG also have similar physicochemical and toxicological properties. The chemistry of the alkyl organotins has been well studied. For organotins, like MMT(EHTG), the alkyl groups are strongly bound to tin and remain bound to tin under most reaction conditions. However, other ligands, such as carboxylates or sulfur based ligands (EHTG), are more labile and are readily replaced under mild reaction conditions. To assess the reactivity of MMT(EHTG) under physiological conditions simulating the mammalian stomach, an in-vitro hydrolysis test was performed. This in vitro test provides chemical information that strongly suggests both the probable in vivo metabolic pathway and the toxicokinetics of the MMT(EHTG) substance. This result verifies that under physiological conditions MMT(EHTG) is rapidly and essentially completely converted to the corresponding monomethyltin chloride, MMTC. Acute toxicity: The majority of toxicology studies were conducted with commercial mixtures having high monoalkyltin to dialkyltin ratios. Gastric hydrolysis studies were conducted with TERP and MMT(EHTG) in which simulated gastric fluid [0.07M HCl under physiological conditions] converted these substances to methyltin chloride and the respective organic acids. Based on data for DMTC and DMT esters the dermal penetration of MMTC and its esters is expected to be low. #### Oral: **D-LIMONENE** Acute oral LD50 values for MMTC, MMT(EHTG), MMT(IOTG), and TERP indicated low to moderate toxicity; the most reliable data place the LD50s in the range of 1000 mg/kg. The acute oral LD50 of MMT(2-EHMA) was 880 mg/kg in rats. Clinical observations included depression, comatose, piloerection, eye squinting, hunched posture, laboured breathing, ataxia, faecal/urine stains, and masticatory movement. No gross pathological changes were reported in surviving animals. Dermal Acute dermal LD50 values were =1000 mg/kg bw, and inhalation LC50 was >200 mg/L. MMTC was corrosive to skin and assumed corrosive to eyes. The acute dermal LD50 of MMT(2-EHMA) in rabbits was 1000 (460 to 2020) mg/kg for females and 2150 (1000 to 4620) mg/kg for males. There were no deaths at 215 and 464 mg/kg, 0/2 males and 1/2 females died at 1000 mg/kg and 1/2 males and 2/2 females died at 2150 mg/kg. All animals died at 4640 and 10 000 mg/kg. A variety of clinical abnormalities were observed and disappeared in surviving animals by the end of the exposure period. Clinical signs included death, uncoordinated movements, shaking, and hypersensitivity to external stimuli. Gross necropsy results for animals that died during the study included irritated intestines; blanched stomach; reddened lungs; pale or congested kidnevs: and oral, ocular and/or nasal discharges The acute inhalation LC50 of MMT(2-EHMA) was 240 mg/L. The study reported an acute inhalation LC50 of 240 (212 to 271) mg/L in a 1-hr aerosol exposure to male and female rats. The mortality rate was 2/10, 6/10, 9/10 and 10/10 animals at dose levels of 200, 250, 300 and 250 mg/L/hr, respectively. Gross findings included blood in lungs, dark spleen, pale kidneys, fluid in the chest cavity, and heart failure. The slope of the dose-response curve was 1.22 (1.04 to 1.43). MMT(IOTG)/(EHTG) are irritating to skin, but not to eyes. Sensitisation: No data on sensitization are available on MMT(EHTG/(IOTG), but the hydrolysis products EHTG or IOTG are sensitizers. No primary irritation data were available for TERP, but it was a sensitizer in the mouse Local Lymph Node Assay. Topical application with 5, 25 and 50 % v/v MMT(2-EHMA) elicited a stimulation index (SI) of 2.13, 7.25 and 9.05, respectively in a local lymph node assay (OECD 429), thus the material is a sensitiser. Repeat dose toxicity: There are no repeated-dose studies for the category members via the dermal or inhalation routes. In a 90-day repeated dose oral study of MMTC, treatment-related changes were limited to the high dose group (750 ppm in diet; 50 mg/kg bw/d with some gender-related variation). Organ weight changes (adrenal, kidney, thymus, spleen, brain, epididymides), haematology, clinical chemistry, and urinalysis changes were noted, but histopathology only confirmed effects in the thymus and brain. The critical toxic effects were neurotoxicity and thymic atrophy. Both sexes had decreased cortex/medulla ratios in the thymus. In the brain there was loss of perikarya of neuronal cells in the pyramidal layer of the Hippocampus CA1/2 in both sexes, and in males there was loss of perikarya in the piriform cortex. The NOAEL was 150 ppm (10 mg/kg bw/d). Another 90-day dietary study using MMTC showed increased relative kidney weights and slight to moderate epithelial hyperplasia of the bladder in females at the lowest dose (NOAEL <20 ppm in diet [<1-3.6 mg/kg bw/d]) and additional effects including increased relative thymus weights in females and urinalysis results in both sexes at higher doses. A 90-day dietary study with dose levels of 30, 100, 300, and 1000 ppm TERP in the diet resulted in slightly decreased food intake, body and organ weight changes, and decreased specific gravity of the urine at the highest dose. The NOAEL was 300 ppm in diet (equivalent to 15 mg/kg bw/d). A 28-day gavage study using TERP showed changes in clinical chemistry and slight differences in haematology at 150 mg/kg bw/d and higher. The NOAEL was 50 mg/kg bw/d. Chemwatch: 5584-33 Page 10 of 14 Issue Date: 17/02/2023 Version No: 4.1 Print Date: 20/02/2023 #### Tork Premium Air Freshener Mixed A1 The effects of MMT(IOTG) were evaluated in a 90-day dietary study using doses of 100, 500, and 1500 ppm (decreased from 2500 ppm) in the diet. Based on clinical chemistry effects at 500 ppm and other effects at higher doses, the NOAEL was 100 ppm in diet (approximately 6-21 mg/kg bw/d). #### Neurotoxicity: In a quideline 90-day subchronic dietary study conducted in Wistar rats, effects occurred at the high dose of 750 ppm MMT(2-EHMA, (equivalent to 49.7 mg/kg bw/day in males and 53.6 mg/kg bw/day in females), which consisted of changes in neurobehavioral parameters and associated brain histopathology. The NOAEL was the next lower dose of 150 ppm (equivalent to 9.8 mg/kg bw/day in males and 10.2 mg/kg bw/day in females #### Immunotoxicity: Immune function was assessed in male Sprague-Dawley rats exposed to the mixture of organotins used in PVC pipe production. Adult male rats were given drinking water for 28 d containing a mixture of dibutyltin dichloride (DBTC), dimethyltin dichloride (DMTC), monobutyltin trichloride (MBT), and monomethyltin trichloride (MMT) in a 2:2:1:1 ratio, respectively, at 3 different concentrations (5:5:2.5:2.5, 10:10:5:5, or 20:20:10:10 mg organotin/L). Rats were also exposed to MMT alone (20 or 40 mg MMT/L) or plain water as a control. Delayed-type hypersensitivity, antibody synthesis, and natural killer cell cytotoxicity were evaluated in separate endpoint groups immediately after exposure ended. The evaluated immune functions were not affected by the mixture or by MMT alone. The data suggest that immunotoxicity is unlikely to result from the concentration of organotins present in drinking water delivered via PVC pipes, as the concentrations used were several orders of magnitude higher than those expected to leach from PVC pipes #### Genotoxicity: In a guideline 90-day subchronic dietary study in rats, with MMT(2-EHMA), based on the changes in neurobehavioral parameters and associated brain histopathology that occurred at the high dose of 750 ppm (equivalent to 49.7 mg/kg bw/day in males and 53.6 mg/kg bw/day in females), as well as changes in haematology, clinical chemistry, urinalysis, organ weights, and pathology of the thymus at the same dose, the NOAEL was the next lower dose of 150 ppm (equivalent to 9.8 mg/kg bw/day in males and 10.2 mg/kg bw/day in females). The monomethyltin compounds as a class are not mutagenic in the Ames test. TERP was positive in a human lymphocyte assay. MMTC was equivocal for induction of micronucleated polychromatic erythrocytes (MPEs) in an in vivo rat micronucleus test (OECD 474). In this study a statistically significant increase in MPE was observed only at 24 h and not at 48 h after treatment and there was no dose-response.
Based on these observations the overall conclusion is that MMTC does not have genotoxic potential. From the results obtained in a micronucleus test with MMT(2-EHMA), it was demonstrated that the substance was weakly genotoxic to bone marrow cells of rats and that the substance has the potential to induce damage to the mitotic spindle apparatus of the bone marrow target cells. In a limited carcinogenicity study, MMT(EHTG) produced no compound-related macroscopic or microscopic changes in rats fed 100 ppm in the diet for two years. #### Toxicity to reproduction: In the reproductive satellite portion of the 90-day study using MMTC (with dose levels of 30, 150, and 750 ppm in the diet), post-implantation loss, decreased litter size and increased neonatal mortality occurred at 750 ppm (26-46 mg/kg bw/d for females). Maternal gestational body weights were transiently suppressed and other maternal toxicity was inferred from the repeated dose results at this dose. There were no malformations observed at any dose. The NOAEL for maternal toxicity, and reproductive, and foetotoxic effects was 150 ppm in the diet (6-12 mg/kg bw/d). SIDS Inital Assessment Profile (SIAM 23 2006) ECHA Registration Dossier for MMT(2-EHMA) (ethylhexyl 10-ethyl-4-[[2-[(2-ethylhexyl)oxy]-2-oxoethyl]thio]-4-methyl-7-oxo-8-oxa-3,5-dithia- ## **ETHANOL & ISOPROPANOL** The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. ### ISOPROPANOL & CITRAL Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. #### ISOPROPANOL & D-LIMONENE The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. #### CITRAL & D-LIMONENE Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management. Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances. Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported. Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl Chemwatch: 5584-33 Page 11 of 14 #### Tork Premium Air Freshener Mixed A1 Issue Date: 17/02/2023 Print Date: 20/02/2023 salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil. Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur, but are rare. General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema. Fragrance allergens act as haptens, which are small molecules that cause an immune reaction only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but some require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but it is transformed into a hapten outside the skin by a chemical reaction (oxidation in air or reaction with light) without the requirement of an enzyme. For prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, for example, prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves, and thereby form new sensitisers. Prehaptens: Most terpenes with oxidisable allylic positions can be expected to self-oxidise on air exposure. Depending on the stability of the oxidation products that are formed, the oxidized products will have differing levels of sensitization potential. Tests shows that air exposure of lavender oil increased the potential for sensitization. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as preand prohaptens. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin
Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Leaend: - 💢 Data either not available or does not fill the criteria for classification - Data available to make classification ## **SECTION 12 Ecological information** #### Toxicity Version No: 4.1 | Tork Premium Air Freshener
Mixed A1 | Endpoint | Test Duration (hr) | Species | Valu | е | Source | |--|------------------|--------------------|-------------------------------|--------------|-----------|-----------------| | | Not
Available | Not Available | Not Available | Not
Avail | able | Not
Availabl | | | Endpoint | Test Duration (hr) | Species | Value | | Sourc | | | EC50(ECx) | 96h | Algae or other aquatic plants | <0.00 | 1mg/L | 4 | | athanal | EC50 | 72h | Algae or other aquatic plants | 275mg | g/l | 2 | | ethanol | LC50 | 96h | Fish | 42mg/ | 1 | 4 | | | EC50 | 96h | Algae or other aquatic plants | <0.00 | 1mg/L | 4 | | | EC50 | 48h | Crustacea | 2mg/l | | 4 | | | Endpoint | Test Duration (hr) | Species | Valu | е | Source | | | EC50(ECx) | 24h | Algae or other aquatic plants | 0.01 | Img/L | 4 | | | LC50 | 96h | Fish | >140 | >1400mg/l | | | isopropanol | EC50 | 72h | Algae or other aquatic plants | >100 | 0mg/l | 1 | | | EC50 | 96h | Algae or other aquatic plants | >100 | 0mg/l | 1 | | | EC50 | 48h | Crustacea | 7550 | mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | V | alue | Source | | | EC10(ECx) | 96h | Algae or other aquatic plants | 1. | .9mg/l | 1 | | .201 | EC50 | 72h | Algae or other aquatic plants | 10 | 6mg/l | 1 | | citral | EC50 | 96h | Algae or other aquatic plants | 1: | 9mg/l | 1 | | | LC50 | 96h | Fish | 4. | .6mg/l | 1 | | | EC50 | 48h | Crustacea | 6 | .8mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | | Source | | | NOEC(ECx) | 0h | Algae or other aquatic plants | <0.05-1 | .5mg/l | 4 | | d-limonene | EC50 | 72h | Algae or other aquatic plants | 0.214mg | g/l | 2 | | | LC50 | 96h | Fish | 0.46mg/ | 1 | 2 | | | EC50 | 48h | Crustacea | 0.307mg | g/l | 2 | Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Version No: 4.1 #### **Tork Premium Air Freshener Mixed A1** Issue Date: **17/02/2023**Print Date: **20/02/2023** Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | | citral | LOW | LOW | | d-limonene | HIGH | HIGH | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-------------|------------------------| | ethanol | LOW (LogKOW = -0.31) | | isopropanol | LOW (LogKOW = 0.05) | | citral | LOW (LogKOW = 3.4453) | | d-limonene | HIGH (LogKOW = 4.8275) | #### Mobility in soil | Ingredient | Mobility | |-------------|-------------------| | ethanol | HIGH (KOC = 1) | | isopropanol | HIGH (KOC = 1.06) | | citral | LOW (KOC = 147.7) | | d-limonene | LOW (KOC = 1324) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Consult State Land Waste Management Authority for disposal. - ▶ Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - ► DO NOT incinerate or puncture aerosol cans. - ▶ Bury residues and emptied aerosol cans at an approved site. #### **SECTION 14 Transport information** #### **Labels Required** ## Marine Pollutant HAZCHEM Not Applicable ## Land transport (ADG) | UN number or ID number | 1950 | | |------------------------------|---|--| | UN proper shipping name | AEROSOLS | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | Packing group | Not Applicable | | | Environmental hazard | Environmentally hazardous | | | Special precautions for user | Special provisions 63 190 277 327 344 381 Limited quantity 1000ml | | ## Air transport (ICAO-IATA / DGR) UN number 1950 **Tork Premium Air Freshener Mixed A1** Page 13 of 14 Issue Date: 17/02/2023 Print Date: 20/02/2023 Print Date: 20/02/2023 | UN proper shipping name | Aerosols, flammable | | | | |------------------------------|---|----------------------------|----------------|--| | | ICAO/IATA Class | 2.1 | | | | Transport hazard class(es) | ERG Code | Not Applicable 10L | | | | Packing group | Not Applicable | | | | | Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A145 A167 A802 | | | | Cargo Only Packing Instructions 20 | | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 203 | | | | Passenger and Cargo Maximum Qty / Pack | | 75 kg | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y203 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 30 kg G | | ## Sea transport (IMDG-Code / GGVSee) | UN number | 1950 | | | | |------------------------------|--|--------------------|--|--| | ON Humber | 1930 | 350 | | | | UN proper shipping name | AEROSOLS | | | | | Transport hazard class(es) | | 2.1 Not Applicable | | | | Packing group | Not Applicable | | | | | Environmental hazard | Marine Pollutant | | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | | | ## Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | ethanol | Not Available | | isopropanol | Not Available | | citral | Not Available | | d-limonene | Not Available | ## Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------|---------------| | ethanol | Not Available | | isopropanol | Not Available | | citral | Not Available | | d-limonene | Not Available | ## **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture | Calcity, nearly and on the official of the calculation calculat | | | | |--|--|--|--| | ethanol is found on the following regulatory lists | | | | | Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | Australian Inventory of Industrial Chemicals (AIIC) | | | | isopropanol is found on the following regulatory lists | | | | | Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC | | | | Australian Inventory of Industrial Chemicals (AIIC) | Monographs - Not Classified as Carcinogenic | | | | citral is found on the following regulatory lists | | | | | Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | Australian Inventory of Industrial Chemicals (AIIC) | | | | Australia Standard for the
Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 | | | | | d-limonene is found on the following regulatory lists | | | | | Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC | | | | Australian Inventory of Industrial Chemicals (AIIC) | Monographs - Not Classified as Carcinogenic | | | Chemwatch: 5584-33 Page **14** of **14** Issue Date: 17/02/2023 Version No: 4.1 Print Date: 20/02/2023 #### **Tork Premium Air Freshener Mixed A1** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (ethanol; isopropanol; citral; d-limonene) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 17/02/2023 | |---------------|------------| | Initial Date | 21/12/2022 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 3.1 | 15/02/2023 | Hazards identification - Classification, Identification of the substance / mixture and of the company / undertaking - Synonyms | | 4.1 | 17/02/2023 | Hazards identification - Classification, Identification of the substance / mixture and of the company / undertaking - Synonyms | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.