

SAFETY DATA SHEET

Revision date: 19-Dec-2024 Revision Number 1

Section 1: Identification

Product identifier

Product Name LANCO TF 1780 C

Product Code(s) 000000054727

Other means of identification

Synonyms LANCO TF-1780C

Recommended use of the chemical and restrictions on use

Recommended use Packaging.

Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier

IXOM Operations Pty Ltd (Incorporated in Australia)

NZBN: 9429041465226

Street Address: 166 Totara Street

Mt Maunganui South

New Zealand

Telephone Number: +64 9 368 2700

Facsimile: +64 9 368 2710

Emergency telephone number

Emergency Telephone 0 800 734 607 (ALL HOURS)

Please ensure you refer to the limitations of this Safety Data Sheet as set out in the "Other Information" section at the end of this Data Sheet.

Section 2: Hazard identification

Not classified as a Dangerous Good under NZS 5433 Transport of Dangerous Goods on Land; NON-DANGEROUS GOODS.

Based on available information, not classified as hazardous according to criteria in the Hazardous Substances (Hazard Classification) Notice 2020.

GHS Classification

Label elements

Other hazards which do not result in classification

May form combustible dust concentrations in air.

Section 3: Composition/information on ingredients

Chemical name	CAS No.	Weight-%
Non hazardous component(s)	-	100

Section 4: First-aid measures

Description of first aid measures

General advice For advice, contact a Poisons Information Centre (e.g. phone Australia 13 11 26; New

Zealand 0800 764 766) or a doctor.

Inhalation Remove to fresh air. (Call a physician if symptoms occur).

Eye contact Rinse thoroughly with plenty of water, also under the eyelids. Get medical attention if

symptoms occur.

Skin contact Wash skin with soap and water. (Call a physician if symptoms occur).

Ingestion Clean mouth with water and drink afterwards plenty of water. Get medical attention if

symptoms occur.

Most important symptoms and effects, both acute and delayed

Symptoms Dust contact with the eyes can lead to mechanical irritation.

Effects of Exposure No information available.

Indication of any immediate medical attention and special treatment needed

Note to physiciansTreat symptomatically.

Section 5: Fire-fighting measures

Suitable Extinguishing Media

Suitable Extinguishing Media Water spray, fog or regular foam. Carbon dioxide (CO2) may be ineffective on large fires.

Unsuitable extinguishing media High volume water jet.

Specific hazards arising from the chemical

Specific hazards arising from the

chemical

Combustible solid. On burning will emit toxic fumes, including those of oxides of carbon. Most organic dusts are combustible and according to the circumstances under which the combustion process occurs, such materials may cause fires and/or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Dusts in

the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).

When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts.

Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large-scale explosions have resulted from chain reactions of this type. Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. Build-up of electrostatic charge may be prevented by bonding and grounding. Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending on how the powder was manufactured and handled which means that it is virtually impossible to use flammability data published in the literature for dusts. Dusts or fumes may form explosive mixtures in air. Avoid generation of dust. Most organic dusts are combustible and according to the circumstances under which the combustion process occurs, such materials may cause fires and/or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (includingsecondary explosions). Dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).

When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount ofenergy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts.

Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large-scale explosions have resulted from chain reactions of this type. Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. Build-up of electrostatic charge may be prevented by bonding and grounding. Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending on how the powder was manufactured and handled which means that it is virtually impossible to use flammability data published in the literature for dusts. In the event of fire, cool tanks with water spray. Fire residues and contaminated fire

extinguishing water must be disposed of in accordance with local regulations.

Hazardous combustion products Carbon monoxide (CO). Carbon dioxide (CO2). Hydrogen fluoride. Carbonyl fluoride.

Fluorinated hydrocarbons.

Special protective actions for fire-fighters

Special protective equipment and precautions for fire-fighters

Firefighters should wear self-contained breathing apparatus and full firefighting turnout gear.

Use personal protection equipment.

Section 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures

Personal precautions Avoid breathing dust or spray mist. Avoid contact with skin and eyes. Avoid generation of

dust. Ensure adequate ventilation. Evacuate personnel to safe areas. Do not touch or walk through spilled material. Use personal protective equipment as required. Wash thoroughly

after handling.

Other information Ventilate the area.

For emergency responders Shut off ignition sources. Clear area of all unprotected personnel. Use personal protection

recommended in Section 8.

Environmental precautions

Environmental precautions Prevent further leakage or spillage if safe to do so. Prevent product from entering drains.

See Section 12 for additional Ecological Information.

Methods and material for containment and cleaning up

Methods for containment Remove ignition sources. Provide adequate ventilation. Stop leak if you can do it without

risk. Keep out of drains, sewers, ditches and waterways.

Methods for cleaning up

Use appropriate personal protective equipment (PPE). Carefully shovel or sweep up spilled

material and place in suitable container. Avoid generating dust.

Precautions to prevent secondary hazards

Prevention of secondary hazards Clean contaminated objects and areas thoroughly observing environmental regulations.

Section 7: Handling and storage

Precautions for safe handling

Advice on safe handling Avoid contact with skin and eyes. Avoid generation of dust. Use personal protection

equipment. Wash thoroughly after handling. Take precautionary measures against static discharges. Handle in accordance with good industrial hygiene and safety practice. Avoid breathing dust or spray mist. May form flammable dust clouds in air. Ground and bond all lines and equipment associated with product system. All equipment should be non-sparking.

All equipment may need to be explosion-proof based on a risk assessment.

General hygiene considerations Contaminated work clothing should not be allowed out of the workplace. Regular cleaning of

equipment, work area and clothing is recommended. Wash hands before breaks and

immediately after handling the product.

Conditions for safe storage, including any incompatibilities

Storage Conditions Keep containers tightly closed in a cool, well-ventilated place. Keep container closed when

not in use. Store away from sources of heat or ignition. Store away from incompatible

materials described in Section 10.

Incompatible materials Strong oxidizing agents.

Section 8: Exposure controls/personal protection

Control parameters

Exposure Limits

No value assigned for this specific material by the New Zealand Workplace Health & Safety

Authority, However, Workplace Exposure Standard(s) for particulates and decomposition

Authority. However, Workplace Exposure Standard(s) for particulates and decomposition

product(s):.

Particulates not otherwise classified: 8hr WES-TWA 10 mg/m³ (inhalable dust) or 3 mg/m³ (respirable dust) Paraffin wax fume: WES-TWA 2 mg/m³

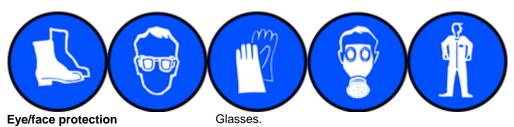
As published by the New Zealand Workplace Health & Safety Authority.

WES - TWA (Workplace Exposure Standard - Time Weighted Average) - The eight-hour, time-weighted average exposure standard is designed to protect the worker from the effects of long-term exposure.

These Workplace Exposure Standards are guides to be used in the control of occupational health hazards. All atmospheric contamination should be kept to as low a level as is workable. These workplace exposure standards should not be used as fine dividing lines between safe and dangerous concentrations of chemicals. They are not a measure of relative toxicity.

Appropriate engineering controls

Engineering controls


Ensure adequate ventilation, especially in confined areas. Apply technical measures to comply with the occupational exposure limits.

If in the handling and application of this material, safe exposure levels could be exceeded, the use of engineering controls such as local exhaust ventilation must be considered and the results documented. If achieving safe exposure levels does not require engineering controls, then a detailed and documented risk assessment using the relevant Personal Protective Equipment (PPE) (refer to PPE section below) as a basis must be carried out to determine the minimum PPE requirements.

Individual protection measures, such as personal protective equipment

The selection of PPE is dependent on a detailed risk assessment. The risk assessment should consider the work situation, the physical form of the chemical, the handling methods, and environmental factors.

OVERALLS, SAFETY SHOES, SAFETY GLASSES, GLOVES, DUST MASK.

Hand protection Impervious gloves.

Overalls. Wear suitable protective clothing. Boots. Skin and body protection

Respiratory protection If determined by a risk assessment an inhalation risk exists, wear a dust mask/respirator

meeting the requirements of AS/NZS 1715 and AS/NZS 1716.

Environmental exposure controls No information available.

Section 9: Physical and chemical properties

Information on basic physical and chemical properties

Physical state Solid **Appearance** Powder Color Off-white Odor Characteristic

Odor threshold No information available

Remarks • Method **Property** <u>Values</u>

Not applicable None known pН Melting point / freezing point >100°C None known Boiling point / boiling range No data available None known Flash point Not applicable None known **Evaporation rate** No data available None known Flammability (solid, gas) No data available None known Flammability Limit in Air None known

Upper flammability or explosive No data available

limits

Lower flammability or explosive No data available

limits

No data available None known Vapor pressure Vapor density No data available None known Relative density 1.07 at 20°C None known Water solubility Insoluble None known Solubility(ies) No data available None known Partition coefficient No data available None known **Autoignition temperature** No data available None known **Decomposition temperature** None known

Kinematic viscosity No data available None known **Dynamic viscosity** No data available None known

Other information Particle characteristics

Section 10: Stability and reactivity

Reactivity

Reactivity No information available.

Chemical stability

Stability Stable under normal ambient and anticipated storage and handling conditions of

temperature and pressure.

Explosion data

Sensitivity to mechanical impact None.

Sensitivity to static discharge Fine dust dispersed in air, in sufficient concentrations, and in the presence of an ignition

source is a potential dust explosion hazard.

Possibility of hazardous reactions

Possibility of hazardous reactions Dust can form an explosive mixture with air.

Conditions to avoid

Conditions to avoid Excessive heat. Dispersal of dust in the air. Static discharge (electrostatic discharge).

Incompatible materials

Incompatible materials Strong oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products Carbon monoxide (CO). Carbon dioxide (CO2). Hydrogen fluoride. Carbonyl fluoride.

Fluorinated hydrocarbons.

Section 11: Toxicological information

Acute toxicity

Information on likely routes of exposure

Product Information No adverse health effects expected if the chemical is handled in accordance with this Safety

Data Sheet and the chemical label. Symptoms or effects that may arise if the chemical is

mishandled and overexposure occurs are:

Inhalation May cause irritation. Inhalation of fumes caused by overheating this material may cause

'polymer fume fever', a temporary flu-like illness with fever, chills, and sometimes cough, of

approximately 24 hours duration.

Eye contact May cause irritation. Dust contact with the eyes can lead to mechanical irritation.

Skin contact May cause irritation.

Ingestion May cause gastrointestinal discomfort if consumed in large amounts.

Symptoms Dust contact with the eyes can lead to mechanical irritation.

Acute toxicity .

Numerical measures of toxicity

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation Not classified.

Serious eye damage/eye irritation Not classified.

Respiratory or skin sensitization No information available.

Germ cell mutagenicity No information available.

Carcinogenicity No information available.

Reproductive toxicity No information available.

STOT - single exposure No information available.

STOT - repeated exposure Repeated, long-term oral administration of polytetrafluoroethylene resulted in an alteration

in the number of circulating white blood cells.

Aspiration hazard No information available.

of mucous membranes and the upper respiratory tract. Exposure to decomposition products from PTFE heated above 400 degrees C may cause pulmonary inflammation, hemorrhage or edema. These more serious consequences of exposure may occur from extreme thermal decomposition of PTFE which can liberate fume particles, and toxic gases especially under conditions of poor ventilation and/or confined spaces. These decomposition products may initially produce chest tightness or pain, chills, fever, nausea, with shortness of breath, cough wheezing and progression into pulmonary edema. Edema may be delayed in onset and requires medical treatment. In severe cases, if medical intervention is delayed, pulmonary edema may become life threatening. Recovery is generally complete within a few days; in some cases, persistent lung function abnormalities have been reported. At processing or combustion temperatures this product may emit fumes and vapors that cause

irritation, possibly severe, to the respiratory tract, eyes, or skin.

Data used to identify the health effects

Refer to Section 16 for Key literature references and sources for data used to compile the

SDS.

Section 12: Ecological information

Ecotoxicity

Aquatic ecotoxicity Avoid contaminating waterways.

Terrestrial ecotoxicity There is no data for this product.

Persistence and degradability No information available.

Bioaccumulative potential

Bioaccumulation There is no data for this product.

Mobility in soil

Mobility No information available.

Other adverse effects

No information available.

Section 13: Disposal considerations

Waste treatment methods

Waste from residues/unused

products

Dispose of in accordance with federal, state and local regulations.

Contaminated packaging Empty containers pose a potential fire and explosion hazard. Do not cut, puncture or weld

containers.

Empty containers should be taken to an approved waste handling site for recycling or

disposal..

Section 14: Transport information

ROAD AND RAIL TRANSPORT Not classified as a Dangerous Good under NZS 5433 Transport of Dangerous Goods on

Land; NON-DANGEROUS GOODS.

IATA Not classified as Dangerous Goods by the criteria of the International Air Transport

Association (IATA) Dangerous Goods Regulations for transport by air; NON-DANGEROUS

GOODS.

IMDG Not classified as Dangerous Goods by the criteria of the International Maritime Dangerous

Goods Code (IMDG Code) for transport by sea; NON-DANGEROUS GOODS.

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

No information available

Special precautions for user

Please refer to the applicable dangerous goods regulations for additional information

Section 15: Regulatory information

Safety, health and environmental regulations/legislation specific for the substance or mixture

EPA New Zealand HSNO approval code or group standard

Not applicable

National regulations There are no applicable tolerable exposure limits or environmental exposure limits

according to the EPA Controls for Hazardous Substances

Certified handlers, tracking and controlled substance license

requirements

Certified handlers are required for some substances. This includes substances requiring a controlled substance license, and most explosives, vertebrates toxic agents, and certain fumigants. Acutely toxic substances which are a Category 1 or 2, such as pesticides also require Certified handlers. Please check the Health and Safety at Work Act 2015 for further

information

Tracking is required for some highly hazardous substances. These substances need to be under the control of an appropriately trained person or appropriately secured. Please check the Health and Safety at Work Act 2015 for further information

Controlled substance licenses are required to possess certain explosives, vertebrate toxic agents and fumigants. See Part 7 of the Health and Safety at Work Regulation 2017 for

more information

International Regulations

The Montreal Protocol on Substances that Deplete the Ozone Layer Not applicable

The Stockholm Convention on Persistent Organic Pollutants Not applicable

The Rotterdam Convention Not applicable

International Inventories

NZIOC All the constituents of this material are listed on the New Zealand Inventory of Chemicals or

are exempt.

TSCA

Contact supplier for inventory compliance status.

All the constituents of this material are listed on the Australian Inventory of Industrial

Chemicals or are exempt.

TCSI Contact supplier for inventory compliance status.

Legend:

NZIoC - New Zealand Inventory of Chemicals

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory
DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances **IECSC** - China Inventory of Existing Chemical Substances

KECL - Korean Existing Chemicals Inventory

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AIIC- Australian Inventory of Industrial Chemicals

TCSI - Taiwan Chemical Substance Inventory

Section 16: Other information

Supplier Safety Data Sheet 05/2023

LANCO is a trademark.

Prepared By

This Safety Data Sheet has been prepared by IXOM Operations Pty Ltd (Toxicology and

SDS Services).

Revision date: 19-Dec-2024

Reason(s) For Issue: First Issue Primary SDS

Revision Note:

***Indicates updated data since last publication.

Key or legend to abbreviations and acronyms used in the safety data sheet

Legend

SVHC: Substances of Very High Concern for Authorization:

PBT: Persistent, Bioaccumulative, and Toxic (PBT) Substances vPvB: Very Persistent and very Bioaccumulative (vPvB) Substances

STOT: Specific Target Organ Toxicity

ATE: Acute Toxicity Estimate LC50: 50% Lethal Concentration

LD50: 50% Lethal Dose

Legend Section 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

TWA TWA (time-weighted average) STEL STEL (Short Term Exposure Limit)

Ceiling Maximum limit value * Skin designation

** Hazard Designation + Sensitizers

C Carcinogen

Key literature references and sources for data used to compile the SDS

Agency for Toxic Substances and Disease Registry (ATSDR) U.S. Environmental Protection Agency ChemView Database

European Food Safety Authority (EFSA)

Environmental Protection Agency

Acute Exposure Guideline Level(s) (AEGL(s))

U.S. Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act

U.S. Environmental Protection Agency High Production Volume Chemicals

Food Research Journal

Hazardous Substance Database

International Uniform Chemical Information Database (IUCLID)

National Institute of Technology and Evaluation (NITE)

Australia National Industrial Chemicals Notification and Assessment Scheme (NICNAS)

NIOSH (National Institute for Occupational Safety and Health)

National Library of Medicine's ChemID Plus (NLM CIP)

National Library of Medicine's PubMed database (NLM PUBMED)

U.S. National Toxicology Program (NTP)

New Zealand's Chemical Classification and Information Database (CCID)

Organization for Economic Co-operation and Development Environment, Health, and Safety Publications

Organization for Economic Co-operation and Development High Production Volume Chemicals Program

Organization for Economic Co-operation and Development Screening Information Data Set

World Health Organization

Disclaimer

This SDS summarises to our best knowledge at the date of issue, the chemical health and safety hazards of the material and general guidance on how to safely handle the material in the workplace. Since IXOM Operations Pty Ltd cannot anticipate or control the conditions under which the product may be used, each user must, prior to usage, assess and control the risks arising from its use of the material.

If clarification or further information is needed, the user should contact their IXOM representative or IXOM Operations Pty Ltd at the contact details on page 1.

IXOM Operations Pty Ltd's responsibility for the material as sold is subject to the terms and conditions of sale, a copy of which is available upon request.

End of Safety Data Sheet